Tree approximation for discrete time stochastic processes: a process distance approach
نویسندگان
چکیده
Approximating stochastic processes by scenario trees is important in decision analysis. In this paper we focus on improving the approximation quality of trees by smaller, tractable trees. In particular we propose and analyze an iterative algorithm to construct improved approximations: given a stochastic process in discrete time and starting with an arbitrary, approximating tree, the algorithm improves both, the probabilities on the tree and the related path-values of the smaller tree, leading to significantly improved approximations of the initial stochastic process. The quality of the approximation is measured by the process distance (nested distance), which was introduced recently. For the important case of quadratic process distances the algorithm finds locally best approximating trees in finitely many iterations by generalizing multistage k-means clustering.
منابع مشابه
Combination of Approximation and Simulation Approaches for Distribution Functions in Stochastic Networks
This paper deals with the fundamental problem of estimating the distribution function (df) of the duration of the longest path in the stochastic activity network such as PERT network. First a technique is introduced to reduce variance in Conditional Monte Carlo Sampling (CMCS). Second, based on this technique a new procedure is developed for CMCS. Third, a combined approach of simulation and ap...
متن کاملFrom Empirical Observations to Tree Models for Stochastic Optimization: Convergence Properties
In multistage stochastic optimization we use stylized processes to model the relevant stochastic data processes. The basis for building these models is empirical observations. It is well known that the determining distance concept for multistage stochastic optimization problems is the nested distance and not the distance in distribution. In this paper we investigate the question of how to gener...
متن کاملScenario Trees – A Process Distance Approach
The approximation of stochastic processes by trees is an important topic in multistage stochastic programming. In this paper we focus on improving the approximation of large trees by smaller (tractable) trees. The quality of the approximation is measured by the nested distance, recently introduced in [Pflug, Pfl09]. The nested distance is derived from the Wasserstein distance. It additionally t...
متن کاملWavelet Based Estimation of the Derivatives of a Density for a Discrete-Time Stochastic Process: Lp-Losses
We propose a method of estimation of the derivatives of probability density based on wavelets methods for a sequence of random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for such estimators. We suppose that the process is strongly mixing and we show that the rate of convergence essentially depends on the behavior of a special quad...
متن کاملA Stochastic Programming Approach toManufacturing Flow Control
This paper proposes and tests an approximation of the solution of a class of piecewise deterministic control problems, typically used in the modeling of manufacturing ow processes. This approximation uses a stochastic programming approach on a suitably discretized and sampled system. The method proceeds through two stages: (i) the Hamilton-Jacobi-Bellman (HJB) dynamic programming equations for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals OR
دوره 235 شماره
صفحات -
تاریخ انتشار 2015